124 research outputs found

    Exploring the Kibble-Zurek mechanism with homogeneous Bose gases

    Full text link
    Out-of-equilibrium phenomena is a subject of considerable interest in many fields of physics. Ultracold quantum gases, which are extremely clean, well-isolated and highly controllable systems, offer ideal platforms to investigate this topic. The recent progress in tailoring trapping potentials now allows the experimental production of homogeneous samples in custom geometries, which is a key advance for studies of the emergence of coherence in interacting quantum systems. Here we review recent experiments in which temperature quenches have been performed across the Bose-Einstein condensation (BEC) phase transition in an annular geometry and in homogeneous 3D and quasi-2D gases. Combined, these experiments give a comprehensive picture of the Kibble-Zurek (KZ) scenario through complementary measurements of correlation functions and topological defects density. They also allow the measurement of KZ scaling laws, the direct confirmation of the "freeze-out" hypothesis that underlies the KZ theory, and the extraction of critical exponents of the Bose-Einstein condensation transition.Comment: 11 pages, 6 figures; topical revie

    Clock spectroscopy of interacting bosons in deep optical lattices

    Full text link
    We report on high-resolution optical spectroscopy of interacting bosonic 174^{174}Yb atoms in deep optical lattices with negligible tunneling. We prepare Mott insulator phases with singly- and doubly-occupied isolated sites and probe the atoms using an ultra-narrow "clock" transition. Atoms in singly-occupied sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are strongly affected by interatomic interactions, and we measure their inelastic decay rates and energy shifts. We deduce from these measurements all relevant collisional parameters involving both clock states, in particular the intra- and inter-state scattering lengths

    Non-linear Relaxation of Interacting Bosons Coherently Driven on a Narrow Optical Transition

    Full text link
    We study the dynamics of a two-component Bose-Einstein condensate (BEC) of 174^{174}Yb atoms coherently driven on a narrow optical transition. The excitation transfers the BEC to a superposition of states with different internal and momentum quantum numbers. We observe a crossover with decreasing driving strength between a regime of damped oscillations, where coherent driving prevails, and an incoherent regime, where relaxation takes over. Several relaxation mechanisms are involved: inelastic losses involving two excited atoms, leading to a non-exponential decay of populations; Doppler broadening due to the finite momentum width of the BEC and inhomogeneous elastic interactions, both leading to dephasing and to damping of the oscillations. We compare our observations to a two-component Gross-Pitaevskii (GP) model that fully includes these effects. For small or moderate densities, the damping of the oscillations is mostly due to Doppler broadening. In this regime, we find excellent agreement between the model and the experimental results. For higher densities, the role of interactions increases and so does the damping rate of the oscillations. The damping in the GP model is less pronounced than in the experiment, possibly a hint for many-body effects not captured by the mean-field description.Comment: 7 pages, 4 figures; supplementary material available as ancillary fil

    Recent progress on the manipulation of single atoms in optical tweezers for quantum computing

    Full text link
    This paper summarizes our recent progress towards using single rubidium atoms trapped in an optical tweezer to encode quantum information. We demonstrate single qubit rotations on this system and measure the coherence of the qubit. We move the quantum bit over distances of tens of microns and show that the coherence is reserved. We also transfer a qubit atom between two tweezers and show no loss of coherence. Finally, we describe our progress towards conditional entanglement of two atoms by photon emission and two-photon interferences.Comment: Proceedings of the ICOLS07 conferenc

    Optimal approach to quantum communication using dynamic programming

    Full text link
    Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished via noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols--quantum repeater protocols--can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing new, more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final state fidelity for preparing long distance entangled states.Comment: 9 pages, 6 figure
    corecore